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A Combinatorial Proof of Tree Decay of
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We consider finite range Gibbs fields and provide a purely combinatorial proof
of the exponential tree decay of semi-invariants, supposing that the logarithm of
the partition function can be expressed as a sum of suitable local functions of
the boundary conditions. This hypothesis holds for completely analytical Gibbs
fields; in this context the tree decay of semi-invariants has been proven via
analyticity arguments. However the combinatorial proof given here can be
applied also to the more complicated case of disordered systems in the so-called
Griffiths’ phase when analyticity arguments fail.

KEY WORDS: Gibbs fields; semi-invariants; cluster expansion; disordered
systems.

1. INTRODUCTION

In this note we present a purely combinatorial proof of the tree decay
of semi-invariants, also called truncated correlations, Ursell functions, or
cumulants, for a finite range Gibbsian field under the condition that the
logarithm of the partition function can be expressed as the sum of suitable
local functions of the boundary condition.

Let Z,(t) be the partition function in the finite volume A = Z“ with
boundary condition 7 outside A; we assume that

log Z,(z) = ) Px, 4(7) (L1
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where the “effective potentials” ¢ , are such that:

(i) given X = Z“, the functions ¢ , are constant w.r.t. A for the A’s
with a given intersection with X;

(ii) have a suitable decay property with the size of X, uniformly in 4.

The expression (1.1) can be obtained via cluster expansion in the weak
coupling (high temperature and/or small activity) region but it holds
in more general situations. It can also be obtained in the framework of
Dobrushin—Shlosman complete analyticity as well as in the framework of
the so-called scale-adapted cluster expansion, see ref. 3, provided the volume
4 is a disjoint union of cubes whose side length equals the scale of the
expansion. We refer to ref. 3 for a more exhaustive discussion; here we only
say that scale-adapted cluster expansions have been introduced in refs. 17
and 18 in order to perturbatively treat the whole uniqueness region of
lattice spin systems, arbitrarily close to the coexistence line. Moreover, as
we shall see in ref. 5, a variant of (1.1), see Remark 2.2, holds in the
context of disordered lattice systems, also in the delicate situation of
Griffiths’ singularity that makes necessary the use of a graded cluster
expansion, see ref. 3.

In the framework of the renormalization group maps one often
encounters an expression like (1.1) for the renormalized partition function.
In that case the family {¢y ,, X = Z“} represents the ““finite-volume renor-
malized potential.” Both in the case of disordered systems and of renor-
malization group maps the decay properties of ¢, , are weaker than the
corresponding ones of the case of weakly coupled short range Gibbs fields.

The tree decay of semi-invariants is often deduced from analyticity
properties of the pressure, see refs. 7-11 and 19; however, there are physi-
cally interesting situations in which these analyticity properties do not hold
but nevertheless we expect the exponential decay of semi-invariants. The
main example is given by the already quoted case of a disordered lattice
spin system, like a spin glass or a ferromagnetic system subject to a random
field, in presence of the so-called ““Griffiths’ singularity.”” Consider, for
example, a random coupling Ising spin system in Z? described by the
formal Hamiltonian:

H@)= ) J.,,00,—h) o, (1.2
X, yix—yl=1 x

where o, € {—1, +1}, heR is fixed, and J, , are i.i.d. Gaussian random

variables with mean zero and variance one. At high temperature we expect

an exponential tree decay of semi-invariants with a deterministic rate (this

has actually been proved long time ago in ref. 12) but we do not expect

analyticity of thermodynamic functions. This behavior is a consequence of
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the fact that, even though in average the system is weakly coupled none-
theless, with a positive probability, arbitrarily large regions with strong
ferromagnetic couplings can appear inducing, locally, long-range order, as
a consequence of the unboundedness of the random couplings.

The starting point of our combinatorial computation can be illustrated
in the simple case of the semi-invariant of order two namely, the covariance
between two local functions, see ref. 1. For instance, consider a lattice spin
system with finite state space and finite range interaction, say r € [0, o),
whose Hamiltonian, in a finite box A for a configuration ¢, in 4 and a
boundary condition 7, is denoted by H,(o 47 4<). More detailed and precise
definitions will be given later on; here we only say that H,(o 7<) contains
the self-interaction of o, in 4 and the mutual interaction between o,
and 7,.. The Gibbs measure is pu7(0,) =exp{H (0,74)}/Z,(t4c) Where
Z(t4) =3, exp{H (0,7,)}. Notice that we have included the inverse
temperature in H, and changed the usual convention on the sign in the
exponent.

Let f,g be local functions with supports A,, 4, = A such that
dist(4, 4,) >r. We may write

wa(f58) =py(fe)—pu(f) pi(g)

= Y f(o4,)8(0,,) ettt a7
LZPLIR
ZA\(A u4a )(G'A g4 TA") ZA\A (04,74) ZA\A (04,74)
S g f g S/ f g g
Z4(t4) Zi(TAf)

(1.3)

It is clear that the exponential decay of u}( f; g) with dist(A4,, 4,) easily
follows from the analogous property of the quantity

sup

Thp> Ta,> T

(1.4)

ZA\(A,uAg)(UAfO'AgTA‘) Z(ty0) ‘

ZA\Af (O'AfTA“) ZA\Ag(aAgTAC)

This, in turn, is easily seen to follow from (1.1) and suitable decay proper-
ties of ¢y 4, see (2.11) below. Indeed by plugging (1.1) into (1.4) and using
(i) above we easily see that, in the resulting expression, ¢y , cancels out
unless X intersects both 4, and 4,.

The case of a generic semi-invariant of order » is much more subtle
and some more efforts are required to disclose the cancellation mechanism.
The crucial point in our proof is the combinatorial result in Lemma 3.1
which generalizes (1.3) and expresses the semi-invariant in terms of ratios
of partition functions.
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The paper is organized as follows. In Section 2 we give the notation
and a theorem stating our main result, with some comments and examples.
The proof of the theorem is finally given in Section 3.

2. NOTATION AND RESULT

In this section we recall the general framework of Gibbs states for lattice
systems, state our main results, and discuss some possible applications.

2.1. The Lattice

For a,be R we set anb:=min{a, b} and avb:=max{a, b}. For
x=(x,..., x;) € R? we set |x|:=sup,_; ,|x;|. The spatial structure is
modeled by the d-dimensional cubic lattice I :=Z“. We shall denote by
X, ,... the points in L, called sites, and by 4, V, X,... the subsets of L. We
use A°:= L\ 4 to denote the complement of A. For A a finite subset of L,
we use 4 cc L to indicate that A is finite, |4| denotes the cardinality of 4.
We consider L endowed with the distance d(x, y):=|x—y|. As usual
for X,YclL we set d(X,Y):=inf{d(x, y),xeX,yeY}, diam(X):=
sup{d(x, x'), x, x' € X }.

For xel and m a positive integer we let Q,(x):={yel:x; <
Vi <x;+(m—1),i=1,...,d} be the cube of side m with x the site with
smallest coordinates. We denote by F:={X cc L} the collection of all
finite subsets of L. Let L be a positive integer, we denote by [, the col-
lection of sets in F which can be written as the disjoint union of cubes
of side L, more precisely X € F, iff there exist xi,..., x, € L such that
X =Uj-1 Qu(Lxy).

Let E:= {{x, y},x, ye L:d(x, y) =1} be the collection of edges in L.
Note that, according to our definitions, the edges can be also diagonal.
We say that two edges e, e’ € E are connected iff ene’ # J. A subset
(V,E)c (L, E) is said to be connected iff for each pair x, yeV, x#y,
there exists in E a path of connected edges joining them. For X cc L we
then set

T(X) :=inf{|E|, (V, E) = (L, E) connected : V" > X} 2.1

and remark that the infimum is attained (not necessary uniquely) for a
graph (Vy, Ey) < (L, E) which is a tree, i.e., a connected and loop-free
graph. We agree that T(X) =0 if |X| = 1 and note that for x, y € L we have

T({x, y}) =d(x, y).
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2.2. The Configuration Space

The single spin space is given by a finite set & <= R which we consider
endowed with its discrete g-algebra %,. The configuration space in 4 <= L is
&, =S¢ equipped with the product g-algebra %, = #{; we denote &}
and #; simply by & and &. Elements of &, called configurations, are
denoted by o, 7,.... In other words a configuration ¢ € & is a function
o:lL—>9; for AcL we denote by o, the restriction of o to A. Let
Ay, 4, = L be disjoint subsets of L; if g; € # , i =1, 2, we denote by 7,0,
the configuration in & ,, given by g,0,(x) := 32, Tixes,0:(x) for any
xedA, ud,.

A measurable function f:.% — R is called a local function iff there
exists 4 € F such that f e &, namely f is #,-measurable for some A € [F.
For f a local function we shall denote by supp( f), the so-called support
of f, the smallest 4 =< L such that f e %,. If f € #, we shall sometimes
abuse the notation by writing f(o,) instead of f(o). For fe % we let
Ifllo :=sup, s |f(o)| be the sup norm of f.

2.3. The Gibbs State

A potential U is a collection of local functions Uy: & — R, %, -mea-
surable, labeled by finite subsets of L, namely U := {Uy € %, X € F}. We
shall consider only finite range potential namely, potentials U for which
there exists an integer r, called range such that Uy =0 if diam(X) >r. We
remark that we do not require the potential U to be translationally invariant.

For A cc L and ¢ € & we define the Hamiltonian as

Hy(0):= Y, Ux(o) 2.2

XndA+#Z

In this paper we shall consider only finite volume Gibbs measures defined
as follows: let 7 € &, the finite volume Gibbs measure u;, with boundary
condition 7, is the probability measure on %, given by

et 2.3)

uy(o) = 0

where o € &, and Z,(7), called the partition function, is the normalization
constant given by

Z(1):i= Y eMao) 2.4)

ceSy
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we remark that, since the potential U has range r, we have Z, €
%stC:d(x,A)sr}' . . .

For V= Acc L we shall denote by u} ,, the projection (marginal) of
Uy to &% namely, the probability measure on %, given by u ,,(4) = u5(A4),
Ae %, .

2.4. Semi-Invariants

Let AeF, n>=2 an integer, f;, with i =1,..., n, local functions with
A, :=supp(fi)c A, t,eR, withi=1,..., n, and 7 € &; we define

Z(T5 e t,) 1=y <exp{zn: t,f,}) 2.5

The semi-invariant of fi,..., f, w.r.t. the finite volume Gibbs measure u° is
then defined by

0"log Z,(z; ty,..., t,)

IuA(fl;--';fn):= atlatn

2.6)

t;=---=t,=0

note that for n=2 we have u;(fi;/5)=u;(fif2)—ui(f1) wa(f2)
namely, the covariance between f; and f,.

It is possible to express the semi-invariant in terms of the moments of
f1»---» f,- For notation compactness let us set N := {1,..., n} and denote by
2%, the collection of the partitions of N into £ atoms namely,

L

QZﬁ,:z{DE{DI,...,DI} :D,cN,D,# @, D,nD;=Zfori+#j, ) D,.=N}
i=1

2.7

We then have, see, e.g., ref. 21, 11, §12.8

n

pilfii =2 D=0t S T (11 4) @

L= ieDy

2.5. Tree Decay of Semi-Invariants

We may now state our main result. Let f,..., f, be local functions,
n = 2. Given a positive integer L, by enlarging A, := supp( f;), we may (and
do) assume that A; € F;; we shall further assume that for i # j € N we have
d(4;, 4;) > r. We stress that the supports 4; can be arbitrarily large, pos-
sibly diverging with A.
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Let us denote by (V,, Ey) the graph obtained from (L, E) by con-
tracting each A;, ie N, to a single point, in other words we define
Vy:={x:xel\U/_, 4;} v Ui, {4}, Ey:={{v,v'},v,0 €Vy:d(v,v)
=1}, and

T (fi5--5 [0) = inf{|E|, (V, E) = (Vy, Ey) connected : V' > o {Ai}}

2.9)

Theorem 2.1. Let L e N, assume that for each 4 € [, and 7 € & we
have the expansion

logZ(t)= ) ¢x.4(0) (2.10)

XnAd+#g

for some local functions ¢y , € %, X € F, such that given 4, A' cc L, we
have that X n A =X n A’ implies ¢y , = ¢y ,. If there exist reals a,5>0
and C < oo such that for any 4 € [,

sup Y. exp{aT(X)+bdiam(X)} ¢y 4ll.. <C (2.11)

xel Xox

then for each n > 2 there exists a real K, = K, (C; |4,|,..., |4,]) such that

n

s fol <Ko | [ av 2 ) 7 T ummzzlz)

i=1

forany AeF, and 7 € &.
Furthermore, if (2.11) is satisfied with ¢ >0 and A4,,..., 4, are such
that for some d € (0, 1)

1

<— .
6e(1+18Ce) @.13)

1
A:=sup Y. (|4,]Al4;]) exp { ) add(4,;, Aj)}

ieN j#i

then

|5 (fises SOl <exp{—a(1-0) T (fi;..; f)} ljl wafi) 214

forany AelF,,7e ¥, and n > 2.
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Note that the hypotheses (2.10) and (2.11) with a+5 > 0 imply ref. 8,
Condition IVa which is one of the Dobrushin—Shlosman complete analyti-
city conditions. Indeed by setting

1
x, A,7):= —
g 40):= 2 5]

bx, 4(7) (2.15)
forallte &, A=<, and x € 4, we have that (i) and (ii) of ref. 8, Condi-
tion I'Va hold.

Remark 2.2. Instead of (2.10) we can assume an expansion of the
form

log Z,(7) = Z [WX,A(T) +¢X,A(T)] (2.16)

Xnd+QZ

where ¢y , satisfies the bound (2.11) whereas , , satisfy the same mea-
surability condition namely, that yy , € % and X N4 =X n A" implies
Yy 4=VYyx 4, X €F, and Y , are of finite range, i.e., for some integer 7 we
have Yy , =0 for diam(X) > 7. Then the thesis of Theorem 2.1 still holds
provided d(4;, 4;) >7, i # je N. Note that no bound on the norm of the
family {yy 4, X € F} is required.

Addenda

— One may wonder how we can bound the semi-invariant of » func-
tions in terms of their L' (rather than L") norm. This is possible because f;
have disjoint supports.

— By the methods in refs. 17 and 18, it is possible to prove the follow-
ing converse to Theorem 2.1. If the bound (2.12) holds for n» = 2 then there
are an integer L' > 0 and a real @’ > 0 such that (2.10) and (2.11) hold for
any A€ F,.

— If there exists a unique infinite volume Gibbs state u, as it is typi-
cally the case under conditions implying the validity of (2.10) and (2.11),
then the bounds (2.12) and (2.14) holds also for u.

— If the supports A, are at distance large enough (depending on |4,],
a and C), then the condition (2.13) is satisfied. Note also that one of the
functions f; might have arbitrarily large support.

— In ref. 22, Corollary I1.12.8 it is shown how, in a general setting, it
is possible to deduce some decay of semi-invariants from suitable decay
properties of covariances.
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2.6. Examples

In order to clarify how (2.10) and (2.11) can be shown to hold assum-
ing a convergent cluster expansion, we discuss the standard Ising model at
high temperature; much more general models can be analyzed along the
same lines. The single spin configuration space is % ={—1, +1} and the
potential U is then given by

Jo(x) a(y) if X={x,y} and [x—y|,=1

Uy(o) :=
x(9) {0 otherwise

where J € R and |x|, is the Euclidean norm of x € Z¢. The partition func-
tion (2.4) can be written as

n

Z,(r) =2M [ 1+ > Cyk(r)]

n2l yy.,,€l:5;0¥;=@ 1<i<j<n k=

where I, is the set of polymers intersecting A; a polymer yel, is a
connected set of bonds: for some k> 1, y={b,,..., b} with b, = {x;, y;},
|x; —yil, =1, b, n A # J. We have also set § := (J,., b and

1
COi=ga X [T ee—1]

—1L,+1}4 bey

note that for each ye I, we have {, € %, . For |J| small enough it is
possible to show, see, e.g., ref. 13, § 20.4 or ref. 22, § V.7, that

logZ, = Z z Or(P1se-es ) kljl Cyk (2.17)

n=1 y,...,y,ely

where ¢ is a combinatorial factor, see e.g., ref. 13, Eq. (20.2.8) or ref. 22,
Eq. (V.7.9), vanishing whenever {y,,...,y,} can be split into two subsets
with every polymer of the first one not intersecting any polymer of the
second one. From (2.17) we get (2.10) with ¢, , given by

0

Px.a= Z Z . @r(Piseees V) klﬁl Cyk

n=1 ynyyel:Ui_ 7=

Finally, by standard estimates, see, e.g., ref. 13, § 20.4 or ref. 22, § V.7, we
get that the bound (2.11) holds for some a > 0.

Without entering into the details, we discuss here some models to
which Theorem 2.1 might be applied on the basis of a convergent cluster
expansion.
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— High Temperature/Low Activity Expansions.

The convergence of the cluster expansion for any 4 € F and the tree
decay of the semi-invariants for f;(o) =0a(x;), x; € L is a classical topic
in equilibrium statistical mechanics, see, e.g., ref. 13, § 20.4, ref. 22,
Theorem V.7.13, and refs. 9-11. However we are not aware of any ref-
erence where the case of local functions f; with arbitrary support is dis-
cussed in detail.

— Strong Mixing (SM) Potentials.

The tree decay of the semi-invariants uniform in the boundary con-
figuration is one, called condition Ilc, of the equivalent conditions of the
Dobrushin—Shlosman’s completely analytical interactions.™® It is stated in
a somewhat different form than the one given here: there is no restriction
on d(4;, 4;), but the supports A4, are required to have diam(4,;) <r. We
mention that the equivalence of the tree decay of the semi-invariants with
the other conditions is proven, via a very elegant analytical function
argument, under the additional assumption that the potential U is in the
same connected component (among the interactions satisfying the condi-
tions) of the zero potential, see ref. 7, Comment 2.1.

In the original Dobrushin—Shlosman’s setting the exponential decay
(2.12) is supposed to hold for all 4 € F; however, as discussed in ref. 15,
there are examples in which it holds only for 4 € F, with L large enough.
This has lead to the so-called restricted completely analytical (or Strong
Mixing) scenario, see refs. 15, 16, and 20, in which one considers only the
“regular” volumes 4 € ;. The usual argument to get the tree decay of the
semi-invariants for SM potentials is the following. Consider a rescaled
system whose new single spin variables are the old spin configurations
in the blocks Q;(Lx), x € Z% we can then apply Dobrushin—Shlosman’s
results”® to this rescaled system and get all their equivalent mixing and
analyticity properties of the Gibbs state for every 4 € [, .

Theorem 2.1 allows a direct proof of the tree decay of semi-invariants
for SM potentials (without the hypotheses that U is in the same connected
component of the zero potential) according to the following route. SM
potentials satisfy the finite size condition introduced in refs. 17 and 18
which yields a convergent cluster expansion for which (2.10) and (2.11)
hold for some a >0 and some integer L. As a matter of fact in refs. 17
and 18 it is considered only the case when A is a torus, but it is not too
difficult, see refs. 2 and 4 for some details, to extend it to any 4 € F, and
7€ &. Then Theorem 2.1 yields the tree decay of the semi-invariants in the
sense given by (2.14).
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— Continuous Systems. High Temperature/Low Activity Expan-
sions.

We have described only lattice models, but it is possible to extend
Theorem 2.1 to continuous models. For the infinite volume state, absolute
integrability of the Ursell functions is proven in ref. 19, Theorem 4.4.8. For
a positive pairwise interaction, the convergence of the cluster expansion
uniform in the boundary condition is proven in ref. 23, see also ref. 1 for
the exponential decay of the covariance between local functions.

— Disordered Systems in the Griffiths’ Phase. High Tempera-
ture/Low Activity Expansions.

The convergence of an appropriate multi-scale cluster expansion in
such a situation has been obtained in ref. 12 where the tree decay of the
semi-invariants is proven in detail only for f;(¢) =0(x;). We are in a
situation like the one described in Remark 2.2 with the additional compli-
cation that, depending on the disorder configuration, the functions Yy 4
can have arbitrary large supports. One then obtains some probability
estimates on the disorder which lead to a tree decay in a set of full measure.

— Disordered Systems in the Griffiths” Phase. Small Perturbation
of SM Potentials.

The convergence of an appropriate multi-scale cluster expansion in
such a situation will be proven in ref. 5. We stress that, due to the presence
of arbitrary large regions of strong interaction, the bound (2.11) holds with
b > 0 but a = 0. We refer to ref. 3 for a more detailed discussion.

3. PROOF OF THE TREE DECAY

The usual proofs of tree decay of the semi-invariants from the con-
vergence of the cluster expansion, see, e.g., ref. 13, § 20.4 or ref. 22, § V.7,
are based on the expansion of the perturbed partition function (2.5) and
then in the estimates of the derivatives in (2.6). If one is willing to consider
functions f; with arbitrary supports A, there are some difficulties related in
the need of cluster expand the perturbed measure also inside A4; where the
interaction is not necessary weak. The combinatorial proof we present here
is instead based on the identity (2.8) and will involve (2.10) and (2.11),
which abstract the convergence of a cluster expansion, only outside the
supports A; namely, for the unperturbed system. For simplicity we have
required that the supports of the functions f; are at a distance greater than
the range of the potential.

Let us start by a purely combinatorial lemma which reduces the esti-
mate of the semi-invariant to ratios of partition functions. For 4 € [, and
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IcN={1,.,n} we set A;:=);c; 4, =4 and V;:=A\4,; note that
since we have assumed A, € F;, we have also V; € F,. For g € % let also
R; = R,(0) be defined by Ry = Ry;; =1 and for |I| > 2 by

logR,:= ) (-D)"¥logZ, (3.1)

JcI

note that R; € %< and V= A°U A;. We point out the analogy between
definition (3.1) and the combinatorial set up of Kotecky—Preiss, ref. 14,
Eq. (3). We set finally g, := R, —1 and define ¢’ € &, , s as

¢):=3% ¥ [l e (3.2

k>1 Ies, Iel

in which

k
S, :={_IE {L,..L}:I,cN,h#W =1,#1,, |) I,=N,1is connected}
h=1

(3.3)

where I connected means that for each pair /, I’ in I there exists a sequence
J,el, q=0,...,m, such that I=J,, J,=1I', and J,_,nJ, #J, q=
1,..., m. We note that for k > 2" we have .4, = (.

Lemma 3.1. If d(4,, 4;) > r for any i # je N then for each 7€ S
we have

ta(fiss f) =% [ a4 (04,) fi(a4)] 0" (a7) (34

aEYAN ieN

In particular

LS fI <2l ljl w5 (LD (3.5

Proof. For AeF, Fe#, , with Ar = 4, and 7€ %, by using the
definition (2.3) of the Gibbs state, we get

=3 %exp {mzm Ux(ar)}F(a)
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By using (2.8), the hypotheses d(4,, 4;) > r, and that D is a partition of N,
we thus find

i f= 3 [—ZZEZ; ) exp {Wzi#g Uron } £i@) |

: Z,, (D) Z,(1)]P!
x Y (=D e-nr ¥ ] lk—[ Zy (o7)
=1 Dey k=1 ie Dy Vi

(3.6)
We therefore need to show that

" ) Z Zlel 1
(=3 D=1t ¥ 1 S

l_)e@ ]._.[teDk Viiy

Let I = N, |I| =2, by (3.1) we have the following chain of identities

Y logR,= 3% Y (=DV"¥logZz,

JcI JcI KcJ
V=2

=Y X (=D"""logz,

Kcl J:I>J>oK
=2

I 7] 1| —k
—Z Y logZ, Y (- 1)fk<. >
=0 KcI j=2vk .]_k

K| =k

=log Zy, +(I|-1)1log Z,— ), log Zy,, (3.8)

iel

Therefore, given D € 2% and k € {1,..., £} we have

Z, ZPd-!
[T Q+en=1[] R =r—— (3.9)

J< Dy J <Dy HieDk

Vi
Hence, formula (3.7) follows from (3.9) and the following identity

L

G IS N VI | CET DI R

Dedy k=1 J<D,

where g4 =0 (we also have ¢ =0 but this will not be used in the proof
of (3.10)).
To prove (3.10), we define

Joi={I={l,.. ) ,cN,h# W =1, #1,}
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by expanding the products on the right hand side of (3.10) we get that it is
equal to

Zil (=D E-DN2yl+ Y X aD]] & @311

k>1 Ied, Iel

for appropriate coefficients a(I) which can be computed as follows. Let
d’ :=|2%]| be the number of partitions into ¢ atoms of N; we understand
that d° =0 if £>n+1. Given I €., let us decompose it into maximal
connected components %,,..., 4, namely, I = )" _, 4, where each %, is
connected and for any pair I € €,,, J € 6,, with m # m’ we have I nJ = (J;
let also G, := Uree, I=Nandc, := |(gm|. Then

a(l)=a(%,,..., 6,)

Y (=)' U-D){DeDy:Vm=1,.,h3je{l,.., £} :D;>%,}|
£=1

Z (_1)8_1 (ﬁ_ 1)! dﬁ+h—(c1+~~+ch)
£=1

We note that the recursion relation d} =1 and df,, =d!"'+£d!, with
i,£=1,2,.., holds. Such relation implies that the first term in (3.11)
vanishes (recall that n > 2). Moreover, for the same reason, we have that
a(I)=1if h=1 and ¢, =n namely, if 1€ .4, and a(l)=0 otherwise.
Recalling (3.2), we have thus completed the proof of (3.10). ||

The next lemma states that each ¢, has an exponential decay with the
tree intersecting each 4,, i € I. Given I = {h,,..., h } = N, we define

T(I) r=inf{T({xy,..., ¥ }), x; € 4, with j=1,.., I} (3.12)

and note that T(N) = 7 (fi;...; f,)-

Lemma 3.2. Let Le N, assume that for each A€ F, and 7€ & we
have the expansion (2.10) as in Theorem 2.1 and the bound (2.11) holds.
Set 0y :=0 :=0and

6, := C2"inf |4,] exp { —[a+

iel

71 } T(I)} (3.13)

for |I| = 2. Then, recalling o, has been defined below (3.1), for any I =« N
we have

lell, < 6re” (3.14)
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Proof. By plugging (2.10) into definition (3.1) and understanding
¢x.» =0 whenever X NV = (J, we get

17|

log RI:(_1)|1| Z (—1) Z Z ¢X,V,
j=0 Jcl Xccl
Wi=j XaV,#@

1]

=(_1)|I| Z‘o (_l)j Z z ¢X,V,

Xccl: JcI
Xnd+g J=j

1]

=(=D" Y )3 Y (=D Y ey,

Kol Xnd#¢@,Xndpg=@ j=0 JeI
Xnd#BVkeK Vl=j
1]
I .
=(— - X,V
=(=D" ) % NG Y, ¢xy,
Kcl XnAd#@, Xndpng=@ j=0 HcK JcI
XA # B VkeK Ul=j,JnK=H

We now note that the hypotheses on ¢y, imply that ¢y, =¢y . if
XnVe=Xn (V)" Hence

1]

logRlz(_l)lll z Z z ¢X,VH z (_l)j z 1
K<l Xnd#@,Xndpng=0 Hek j=0 Jel:
XA+ BVkeK Vi=jJnK=H

|71 —|K|+|H]| _
—(-nn Yy » 3 dur, x (N0

Kcl XnA#Z, XndAdpng=0 H<K j=IH|
XA #BVkeK

= X Y (=D gy,

XnAd+#Z Hcl
Xnd;#Viel

where we used that the sum on j on the second line equals
(=1+D)"-¥®=0 for K=Iand K # 1.

Now, by using the bound (2.11) and the remark that if X n 4, # &
for alli e I we have T(1) < (JI|—1) diam(X) and T (1) < T(X), we get

b
llog R,|l., < C2"inf |4,] exp { —<a+ T 1) T(I)} (3.15)
iel -

which, by using the inequality |e*— 1| < e™ |u|, implies the bound (3.14). ||

We remark that it is not difficult to check that Lemma 3.2 holds also
under the condition in Remark 2.2.
We can now prove the first part of Theorem 2.1.
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Proof of the Bound (2.12). Recalling .#, has been defined in (3.3), it
is easy to show that for each £ > 1 and I € ., we have

) <a+|I|_1>T(1)><a+m>J(fl,...,f,,) (3.16)

Iel

Hence (2.12) follows from Lemmas 3.1 and 3.2 provided we define K, as

K, (C; Ay, |4, =Y, Y. [] [C2"inf |4, exp{C 2" inf |4,]}]
k=1 Ies, Iel iel iel (3 17)

which is finite since it is the sum of a finite number of terms. ||

The constant K, in (3.17) is highly non-optimal. If a>0 we can
improve the estimates and get (2.14).

Proposition 3.3. Assume condition (2.13) holds for some a >0,
0 € (0, 1). Recalling 6; has been defined in (3.13), set

0, :=exp{a(1-9) T(I)} 0, (3.18)
then, recalling .#, has been defined in (3.3),

Y Y [l <1 (3.19)
k=1 Ied, Iel
To prove Proposition 3.3 we start by a general result on trees which
gives a lower bound on the number of edges in term of a path connecting
all the vertices.

Lemma 3.4. Let /<N with 2<|I|=k+1 be given by I = {i,,
i1,..., i, }. Let us denote by II,(k) the set of permutations 7 of {0, ..., k}
such that 7(0) = 0. Recalling 7°() has been defined in (3.12), we then have

k
T()>L inf Y d4,, ,.4,,) (3.20)

nelly(k) =1

Proof. Let X ={X,,X; ,..., %, }, X; € 4, be a minimizer for (3.12)
and, for such X, let T, = (Vy, Ex) = (L, E) with V', > X be a tree in which
the infimum in (2.1) is attained. The lemma is implied by

k
Exl>! inf ¥ d(x, ,.%,) (3.21)

nelly(k) 1=

which is proven as follows. By induction on the number of edges in T} it
is easy to prove that there exists a path (see Fig. 1) {£,..., £,_,}, with



A Combinatorial Proof of Tree Decay of Semi-Invariants 411

lar—y
Crrzi
Lpr—g

14 M-=3

Fig. 1. The path £ = {¢,,..., ,,_, } introduced in the proof of Lemma 3.4.

£, € Ey for allm=0,..., M — 1, satisfying the following properties: £,,_, N £,
# for all m=1,..,M—1, x;, €, for each veVy there exists me
{0,..., M —1} such that £, 3 v, and each edge e € Ey appears in the path at
most twice. Recalling that d(x, y) = T({x, y}), the bound (3.21) follows. ||

Lemma 3.5. Assume condition (2.13) is satisfied then, recalling 6,
has been defined in (3.18),

K:=sup Y (@3e)V0,<! (3.22)
ieN I<=N,I>i

Proof. By using Lemma 3.4 and recalling that 6, =0 for all i e N,
we get

sup Y. (3e)"6,

ieN IcN,I>i

<6Cesup Y Y, (6e)*(inf |4;]) e~*T®
ieN k>1 I<N\{i} jel
=k

6 k
<6Cesup ). (6e)

igeN k>1 k!

1

X ( inf |4;])exp {—aé— inf d(4 , )}

il,...,ikze:N\{io} i 2 nemyk IZI (-1 n(l)
igEig, hE N

(6e)* : S el Lo, 4, )
<6Cesup ) Y Y, (inf |4,]) ]_[ 20381y Ay

iven ks1 Kl ilymir€N\{ig} meHyk) "=0--k
0 1 k 0 )

iy Eig hE N
k
< 6Ce Z (6e)k<sup DV AINVE e—aﬁéd(Aj,Ai)>
iel jeI\{i}
6el 1
<6Ce —< -
“1=6ei >3

where, in the last line, we used (2.13). ||
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Proof of Proposition 3.3. We note that from the bound (3.22) it
follows e’ <e’’ <e. By letting e¢:=1/3 and 6,:=(3e)"'6, and using
Lemma 3.5, we can apply the estimate in ref. 6, Appendix B and get

Yoy 1o <y ¥ ]‘[e"'é,<el?[1+el(—_l]<1

k>1 Ies, Iel k>1 Ies, Iel 1+ ¢&2%X —2eek
sincee<1/3and K<1/3. |
It is now straightforward to conclude the proof of Theorem 2.1.

Proof of the Bound (2.14). For I € .#, we have, recalling (3.16)

1_[ 01601 — 1_[ e—a(l—é)T(I) gleﬂl < e—a(l—é)g'(fl;m;fn) n H_Ieﬁl
Iel Iel Iel

and the bound (2.14) follows from Lemmas 3.1 and 3.2 and Proposi-
tion 3.3. ||
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